
Beyond Theory:
Making Single-Sourcing Actually Work

Liz Fraley
Juniper Networks, Inc.

1194 N. Mathilda Avenue
Sunnyvale, CA 94089

408-745-2000

liz@juniper.net,
acm@caltonia.com

ABSTRACT
In this paper, I discuss how we made single-sourcing work at
Juniper Networks. This is a practical discussion of issues,
problems, and successes.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Extensible Languages—Using
XML/XSLT for documentation production, single sourcing,
implementation issues and successes

H.4.1 [Office Automation]: Desktop publishing—publishing
XML to HTML, publishing XML to PDF, converting FrameMaker
to XML

H.5.3 [Group and Organization Interfaces]: Collaborative
Computing—using branched repository for collaborative
authoring

I.7.1 [Document and Text Editing]: Document Management,
Version Control—branching documentation, best practices, when
to branch

I.7.2 [Document Preparation]: Desktop publishing, Languages
and systems, Markup languages, Multi/mixed media— publishing
XML to HTML, publishing XML to PDF, converting FrameMaker
to XML

General Terms
Documentation, Performance, Management, Design

Keywords
XML, XSLT, Java, case study, single source, single-sourcing,
modular writing, chunking, documentation, publishing, branching,
Interwoven, TeamSite, Arbortext, Epic, E3, FrameMaker,
WebWorks, Juniper Networks, commit

1. INTRODUCTION
This paper provides a case study in single-sourcing, examining
how the Technical Publications group at Juniper Networks has
been implementing single-sourcing.

In the past three years, there has been much theory about single-
sourcing, but not enough practice. The literature is full of
information about single sourcing from a theoretical perspective.
So, this paper is more about what isn’t covered in the literature
than what is.

For example, it’s not about how to choose a tool or evaluate a
product, how to code XML, how to get cost savings through
single-sourcing, how to write modularly, or how to structure your
documentation.

And it isn’t about amazing product features, the Juniper
Document Definition, the Juniper-specific applications that we
developed.

Most importantly, this paper is not a set of generalized rules for
making single-sourcing work. It is one long a concrete example
because, in the end, that is what the developer of a single-sourcing
system needs to see. And interestingly enough, it’s what the users
of that single-sourcing system need to see, too.

1.1 The Single Sourcing Literature
For all of the topics that I am not covering, the existing
authorities—Hackos, Rockley, Ament—have everything the
beginning single-sourcer could need. Their books (and conferences)
are extremely useful. They are full of detailed information to teach
managers, writers, and document designers how to think about
single sourcing.

In fact, these authors were influential during our initial document
design. Our original documents, style guide, and templates were
all designed for eventual conversion to a single sourcing system
from the very start. The document design included the
methodology that defined the way documents would be converted
to online html documents. And although we were using
FrameMaker and WebWorks at the time, the definition behind the

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Sigdoc’03, october 12–15, 2003, san francisco, california, usa.

Copyright 2003 acm 1-58113-696-x/03/0010…$5.00.

liz
Logo

http://www.single-sourcing.com/?utm_source=pdf&utm_medium=link&utm_term=sigdoc&utm_content=logo&utm_campaign=us
liz
Text Box
liz.fraley@single-sourcing.com

mailto:liz.fraley@single-sourcing.com

methodology carried over into our single source publishing
implementation.

The only problem with the existing literature is that nearly all of it
is theoretical in nature. Most books on single sourcing contain
advice about planning, managing, and creating modular projects
and documentation. At this, they are very good. What they’re all
missing is the bridge between theory and practice. And they’re
not alone.

I was hired at Juniper Networks specifically to architect (and then
implement) the single-sourcing project. When I started, I had no
practical background in XML; I spent my first six months reading
all the single sourcing literature I could find. I also attended JoAnn
Hackos’s Single Source conference almost before I started
researching.

As an engineer, I found that most of the single-sourcing literature
was aimed at writers or managers.

I was hired to design and implement not to manage. I wouldn’t be
selling upwards: my director was championing this project
throughout the company. She knew that the current
documentation methods (FrameMaker and WebWorks) would not
scale. The company would continue to grow; the demand for
documentation would increase while staffing and resource
challenges persisted. She would be the one determining return on
investment (ROI) and measuring success.

Although I would help determine which tools we eventually
chose, I was not the project manager. My direct manager would be
managing the project and its resources.

What was not aimed at managers was aimed at writers: guidelines
for writing and designing modular documentation. This is
something I would not be part of and should not be. The writers
who would be using the single sourcing system would be planning
their documentation, just as they always did.

This sort of information was valuable as a look at the point of
view of the user, but it wasn’t what I was looking for as an
implementer. But I knew that these books would be essential for
training the writers to write and think modularly.

1.2 The Programming Literature
The way that modular writing works is very similar to methods
for code reuse found in Object-Oriented programming literature.
Code reuse is the assertion that if you build generic objects they
can be used and reused. It is the idea that you can isolate
functionality into a module (function) and then use that module
rather than rewriting the code. The ideas are the same.

Unfortunately, the programming literature faces the same
implementation gap, from the other side. The XML programming
books, which don’t describe its implementation as a language,
describe the multitude of ways you can use XML. They tell you
how to write the XML and how to process it: They do not tell
you how to make XML work in a single sourcing environment.

In addition, these books are not aimed at either of the groups that
the single sourcing documentation targets. XML authors assume
their readers have a programming background and already
understand programming concepts.

1.3 The Bridge between Single-Sourcing and
XML
Ament says it best: “Single sourcing is a methodology, not a
technology ” [1]. XML is a technology, not a methodology.
Bringing the two together is not obvious or well-defined.

Many companies try to sell systems that bring it together. But in
the end, “to ensure success, develop local, project-based standards
for modular writing. Base your standards on what actually works
in your own projects” [1].

We did not manage to find one system that worked for us. And we
did not find one book that describes how to put it all together.

We made choices—good and bad—along the way that influenced
the way we implemented particular pieces. We chose a set of
tools. We did very little customization of those tools but built a
custom HTML generation program, so authors would not have to
worry about pagination issues.

My goal is to provide specific examples like these that can serve
spark ideas to solve someone else’s real problems. That is the
best any case study can do: Give you an idea about what you can
try.

In this paper, I will describe what we developed and the tools we
are using as a context for the lessons we learned and the choices
we made in our pursuit of single sourcing.

2. THE CONTEXT
The single-sourcing project at Juniper Networks is a major
technical publications initiative designed to convert existing
documentation and author new documentation in a single-sourcing
environment. Our goals were to increase the efficiency of our
entire staff as the demand for documentation increased while
staffing and resources did not.

2.1 Our Department
The Juniper Networks technical publications department handles
116 books that have between 100 and 800 pages each. Of these
books, 20 exist in 4 different physical incarnations to match the 4
active software releases (for a total of 80 active documents). These
same 20 books are owned by a total of 10 writers (5 books per
writer). Two writers manage the remaining 36 hardware books.

We have 2 editors who perform at least two edit passes for 25
books every 3 months; the editors also perform at least one pass
for as many other books, which require updating, as they can
squeeze into the release schedule. Editors work with change bars
and whole documents during each edit cycle.

liz
Logo

http://www.single-sourcing.com/?utm_source=pdf&utm_medium=link&utm_term=sigdoc&utm_content=logo&utm_campaign=us

2.2 Our Team
We divided the work into several roles, but not necessarily several
individuals. These roles include:

• Project lead—oversees all aspects of the project, sets
schedule, manages resources

• Tools lead—interacts with IT, does any product
customization to improve user experience, evaluates new
versions and new technology [This person should be an
engineer].

• Single-source architect—architects operation of the overall
system and the individual pieces

• XML expert—provides direction in initial planning, develops
initial DTD and FOSIs

• DTD lead—maintains and enhances DTD(s)

• Mapping developer—develops mapping file to convert
FrameMaker files to XML files

• FOSI lead—maintains and enhances print and screen FOSIs,
resolves FOSI limitations

• HTML lead—implements HTML generation

• Graphics lead—develops naming conventions, resolves
format issues for print and online

• Process guide authors—document tools and how to use them,
document new processes

• IT—installs, configures and troubleshoots tools

3. THE IMPLEMENTATION
We expected a single sourcing environment to address several key
points. The new authoring environment had to be user-friendly
and easy to learn. The look and feel of the published documents
had to be comparable to the existing published documentation.
Most importantly, it had to be able to scale easily, so we could
make enhancements and changes without major infrastructure
changes going forward.

We wanted an environment that allowed writers and editors to be
more productive. Our goals were to promote efficiency and
productivity by reducing maintenance and overhead. We looked
for tools that supported scaling and productivity. Also, we
decided to tune skills, workflow, and processes to new tools so
that the department and company achieve success.

By leveraging XML technology and single sourcing methodology ,
we would be able to write something once and use it multiple
times within a single book as well as between books. We could
edit once. We could revise once and have the change populated
everywhere.

The production requirements were perhaps the most critical to the
project. We had to be able to easily publish to multiple media:
print, PDF, HTML, and PDA (Palm, Microsoft e-Book, CD-
ROM).

Moreover, the new process had to scale: it needed to be able to
handle a growing documentation suite with a reduced production
staff.

3.1 Our Original Environment
Our original environment was a traditional publishing
environment. Source control was minimal. The FrameMaker model
of lock-modify-unlock did not allow collaborative document
authoring. Authors routinely clobbered their old documents on
the network drive. Modifications could not be safely done by
multiple authors unless they were made serially. Production was
time consuming. Any change to the source required all output
formats to be completely regenerated.

These programs and systems made up our original environment:

• Adobe’s FrameMaker 6.0

• WebWorks Publisher 2000

• Network drive for storing documents

• FrameMaker’s locking mechanism for document source
control

3.2 Our Single Source Environment
The tools we chose were a compromise that addressed the goals
we defined at the beginning of the project. In our new single-
source environment, we are using the following tools:

• Authoring: Arbortext’s Epic Editor

• Editing: Arbortext’s Epic Editor, paper

• Content Management: Interwoven’s TeamSite (server and
web client)

• Publishing PDF: Arbortext’s E3

• Publishing HTML: Java/XSLT

All content, including all entities (modular chunks of information),
is created in Epic Editor. TeamSite acts as the repository for all
content and support tools; it also provides individual work
areas—sandboxes—for all authors, editors, and developers. Epic
interacts directly with the TeamSite server; the TeamSite web
client invokes the E3 for document production.

The E3 uses FOSI stylesheets for PDF production. The Epic
Editor client uses a different FOSI stylesheet for on-screen
viewing. There is both a screen FOSI and print FOSI for each
distinct DTD.

We have a java program, htmlBuilder, which produces HTML
output and which is not yet integrated into the TeamSite
workflow. This program uses a set of XSLT stylesheets to
determine the production of HTML pages for each DTD.

Additionally, we use TeamSite for publishing documents directly
to the web.

liz
Logo

http://www.single-sourcing.com/?utm_source=pdf&utm_medium=link&utm_term=sigdoc&utm_content=logo&utm_campaign=us

3.3 Our Content Model
Our information is multidimensional: Information is divided across
multiple books at one time. Several books also exist in multiple
versions at the same time.

Reuse happens at the chapter, section, and even paragraph level.
Both text entities and file entities are used to define modular
chunks. At times they are used together to create conditional text
(see Section 4.5.2).

Reusable content is stored in branch-specific libraries (including
canimages). Branches identify versions at specific points in time.
Content is shared across documents and across branches.

4. THE SUCCESSES
Within a year of beginning full-time development on the single-
sourcing project, we were able to publish our first set of eight
books fully within the single-source environment. This included
creating the DTD, identifying information for reuse, creating the
file entities, creating the print FOSI, integrating the E3 engine with
our Interwoven environment, and developing some of the support
tools (XSLT, HTMLBuilder, clean-up scripts, and so on). More
importantly, we were able to author these guides with literally one
quarter of the work required prior to the migration to a single-
sourcing environment. The re-use of information across multiple
books was essential to being able to deliver these books on time
amid staffing changes. Being able to edit a single chunk of
information rather than the same chunk multiple times was crucial
to this success.

Since that time, we have been able to successfully convert 14 more
books, create 13 new books, update the first 8 books, and push all
35 books all through production.

By the time of the conference, we will have converted 3 more
books, created 6 new books, updated 14 existing books, and
pushed all 23 through production. In addition, we will have 33
books in XML, and, including updates and new authoring, we will
have published a total of 68 books using single sourcing.

4.1 Changing Look and Feel
Our editing team has been extremely responsive to the limitations
of XML authoring. For example, they have managed to reduce the
number of cross-references and homogenize the look and feel. We
now have much fewer and more consistent cross-references that
have well-defined usage rules.

We altered the look and feel our unconverted documentation to
match the XML-generated documentation. Any items we could
not produce with the single sourcing system (such as the graphic
down the side of the page) were removed from the FrameMaker
templates, so the traditionally produced documentation would
look the same as the XML-produced documentation during the
transition period.

No one has been afraid to compromise or to find alternative
suitable look and feel substitutions.

4.2 Small Steps
We didn’t convert all the documents at once. We prioritized the
books and set out a plan for converting books over the course of a
year.

4.2.1 Network Card Books First
Our first books were the network card guides. These books are
small books (about 50 pages) that share nearly 90 percent of their
content. These books had their own DTD that contained a subset
of the elements in the other DTDs. The DTD, FOSIs (PDF
generating stylesheets), htmlBuilder, and the necessary XSLT
stylesheets required less time to develop because they only
include a subset of the total elements. Creating tools to manage a
subset gave us the time to polish the way everything functioned
and the way production produced output. Because these books
update four times per year, the tools team had plenty of time to
flush out bugs.

In addition, the author assigned to these books was not senior but
was enthusiastic about having her books converted. Since so much
of the content of these books was shared, she looked forward to
reducing the amount of time she spent updating them.

4.2.2 Hardware Books Second
After the network card books, we chose to convert the hardware
books. These books average 250 pages and include a greater subset
of total elements. These books also only update when necessary.
We had two quarters to get these books converted and the tools
development completed.

The hardware book was sufficiently different from the PIC
Guides, so we developed a separate hardware DTD, FOSI, and
XSL stylesheets. By this time, we had also implemented
TeamSite, the content repository.

The author assigned to the hardware books was a senior writer
who knew the entire set of books very well. He performed the
book analyses and decided which chunks of text to turn into
entities and where to place them in the library structure.

4.2.3 Software Books Last
The software books were left to last because they have a very
unusual requirement: These books are authored, edited, and
published in the span of two months. Once these books go to
conversion, the tools must be ready and polished, so conversion
and publication can go smoothly and without several rounds of
repeated effort.

liz
Logo

http://www.single-sourcing.com/?utm_source=pdf&utm_medium=link&utm_term=sigdoc&utm_content=logo&utm_campaign=us

4.2.3.1 Some Books Have Software-Generated
Text
At least three of the software books will go before the rest. These
three books all have content that is generated by the software
engineering teams. In one case, the content is generated directly by
the software build process. In another case, the content is
generated directly from the bug database. The Engineering
department and the Software Tools group have both been
extremely supportive of the single sourcing effort. Currently,
both groups produce MIF files that the authors then reapply the
FrameMaker templates to. Once the software tools are ready,
they will generate XML according to the software DTD, so the
author will only need to create a file entity and insert it into the
book.

4.3 Tagging Determines Style
One of our requirements was to minimize the number of ways that
style could be altered by the author.

We chose to let tagging and context determine style. We
specifically decided to omit elements like <emphasis> that have
attributes like “italic” and “bold.” Italic and bold are determined
through the use of other elements when used in a particular
context. We reasoned that if some text is important enough to
mark up for style, it is highly likely that same text should be
marked up for content.

For example, the text inside the <citation> element is always
italicized; because of the citation markup, it is also always
identifiable as a “citation.”

We also created a tag to identify variables. Because we document
command line software and show lots of examples, variables need
to be appear visually different. The text inside <variable> markup
is always italicized and, here also, has the added benefit of being
identified as a “variable” by the markup as well.

If both variable and citation were simply marked up with the
<emphasis> element with the italics attribute, an author searching
for variables would get citations as well as variables as results of
the search. However, searching for <variable> brings up only
variables and the italicizing is left to the stylesheet.

Remember: if it’s not marked, you can’t search for it.

4.4 Chunks Are Entities
Reusable content that is shared between files is always stored in a
file entity. Reusable content that is shared within a single
document is stored in a text entity. Complicated chunks—chunks
with a large amount of markup—are stored in file entities instead
of text entities for easy revision.

Every book has a top-level “book” file that contains data that
pertains only to the book as well as pointers to any file entities
required to complete it.

4.4.1 Create Entities for Shared Content
We created text entities for trademarked names and small pieces of
boilerplate information that are always shared. Updating any of
these entities automatically updates that text in every book that
includes those entities. This behavior has been extremely useful
for maintaining the copyrights and the preface.

4.4.2 Use Scope to Create Conditional Text
By using entities, in the following two ways, we have managed to
achieve the behavior of conditional text:

• Make entities out of shared content across multiple files if
most of the content is not shared.

• Make entities out of unshared content in a single file if most
of the content in that file is shared.

It feels like scope works in reverse. Every XML document is an
independent object. There is no concept of encapsulation in XML.
Saying that File A includes File B means that File A defines an
entity that points to File B, and File A uses that entity
somewhere. A does not literally include File B: it defines an entity
that points to file B:

<!ENTITY file “fileB.xml”>

A could just as easily define the “pointer-to-file” entity this way:

<!ENTITY file “fileC.xml”>

So what happens when you chain files? File A includes File B,
and File B includes File C.

Saying that File A includes File B and File B includes File C is the
same as saying that File A includes Files B and C and File B
includes File C. Both File A and File B list all files they include.

In the simplest case, the definitions for File A would be:

<!ENTITY file-1 “fileB.xml”>

<!ENTITY file-2 “fileC.xml”>

The definitions for File B would only include the pointer to C:

<!ENTITY file-2 “fileC.xml”>

So what happens when the definitions do not agree in the two
files?

What if the definitions look like this?

File A:

<!ENTITY file-1 “fileB.xml”>

<!ENTITY file-2 “fileD.xml”>

File B:

<!ENTITY file-2 “fileC.xml”>

If you process only file B, you see the contents of FileC where
the entity is used. However, if you process File A, you will see

liz
Logo

http://www.single-sourcing.com/?utm_source=pdf&utm_medium=link&utm_term=sigdoc&utm_content=logo&utm_campaign=us

the contents of FileD where the “file2” entity is used, because A
redefines the “file2” entity. It doesn’t matter how “file2” is
defined within B as long as the variable is also defined in A.

The top-most entity has the last word on entity definitions; we
can make small entities out of unique content if most of the
content in the larger entity is shared. In the book file, the small
entity can be redefined to the appropriate book-specific content.

4.4.3 Chapters Are Always File Entities
We made this decision based primarily on the method we are using
for initial conversion. Our existing FrameMaker-based documents
have a book file and several chapter files. Rather than appending
all of the files together into one large file and converting that large
file to XML, we decided to convert the individual chapter files.

This leaves us with several initial file entities that belong in the
book-level library. However, we have found that this makes
speeds up the response time of Epic Editor. Epic caches
information (see Section 5.2), and loads the entire document into
memory. Writers can author in the smaller chapter files rather than
in the full book file. By working in smaller files, the client
response time is much quicker and easier to use.

4.5 Content Libraries
All reusable content exists in the libraries; only reusable content
exists in the libraries. Libraries exist at multiple levels in the
directory structure. The TeamSite repository is structured like a
tree. At every level in the tree, a library exists to hold files
(modular chunks) common to the files at that level and below.

Table 1. Libraries exist at multiple levels

Level Purpose

Corporate Shared across all books, corporate-wide

Document Type
Shared across all hardware books or all
Software books

Series Type
Shared across all M-series hardware books
or all T-series hardware books

Book level Shared across files in a single book

The image library is the only exception: all images live in the same
library. We use a parameter file entity, declared in the DTD, to
define the declarations for all images. In this way, graphics only
need to be declared in this one file to be available to all authors and
all books.

4.6 Branches not a Database
The software books exist in four (and sometimes five) different
versions at the same time. The versions differ by at most 5
percent; the “shared” material is 95 percent from version to
version.

TeamSite is a file system, not a database. Three factors
contributed to our choosing Interwoven’s TeamSite over the
typical database implementation:

• We decided that the documentation—including the library—
branched rather existed in a three metadata-controlled
dimensions.

• We inherited Interwoven in a merger. Our IT department had
been looking for a content management system for the
company but had not made a final decision when the merger
took place. The other company had Interwoven. We got it.

• Resource restrictions lead us to choosing a branch-based
implementation over a database-based implementation. We
did not have the staffing resources to implement a full
database solution. We had only one full-time programmer
devoted to the project’s implementation.

The programmer in me would really rather see this as a database
application, but I’m not convinced that the database
implementation is the right one for this document set. On the
other hand, the file system seems to be an appropriate choice for
our problem domain so far.

First, lots of dimensions are hard to visualize. It would be even
harder to make sure that the metadata required to support a
database implementation could be maintained. Certainly, a
complex metadata scheme would difficult for a completely
inexperienced user base. It may be that eventually a database
implementation may make a nice second generation system after
the users are comfortable with both XML and the source-control
process. Small steps.

Second, we end of life (EOL) our documentation on a regular basis.
Every three months any metadata or chunking related to a release
becomes completely obsolete and useless. I believe that it will be
easier to use a simple XML patch program to propagate bug fixes
across branches than to over chunk—or worse, rechunk—content.

By choosing branching over database metadata, we can let the
software books can branch with the software release to which
they apply . Information is modified from release to release. And
although information is 95% the same, the book analysis showed
that most of the modifications were in existing feature descriptions
rather than in new information. Chunking changes in the middle of
a section is more difficult than patching changes with an
intelligent, tag-aware, XML patching program.

4.6.1 Why Do You Branch?
Branching is a behavior more commonly seen in software
configuration management Tools (SCM). Specifically, branching is
“the creation of variant codelines from other codelines” and “the
most problematic area of SCM. Different SCM tools support
branching in markedly different ways, and different policies
require that branching be used in still more different ways” [2].

When do you branch? Only when necessary.

liz
Logo

http://www.single-sourcing.com/?utm_source=pdf&utm_medium=link&utm_term=sigdoc&utm_content=logo&utm_campaign=us

Branches are used to provide single-purpose individual work areas
that are not shared between developers. A workspace is the place
“where engineers edit source files, build the software components
they're working on, and test and debug what they've
built…sometimes they are called ‘sandboxes’” [2]. Sharing files
creates confusion just like sharing a desk.

Branches are created when files contain features with incompatible
policy. For example, when one development group does not wish
to see another development group’s changes, that is a form of
incompatible policy. Each release has its own policy; changes to
different releases cannot be seen across branches unless
intentionally applied.

Like incompatible policies, incompatible processes can also be
applied to on a per-branch basis. And branching systems typically
support audit trails out of the box. Authors can have work areas,
on each branch, that are subject to the different policy definitions.

Branches also allow the production of nightly builds. The E3 is
capable of performing batch builds. Later in the implementation,
we intend to build all the books nightly and to deliver a PDF of
each book to the editing team twice a month. We expect this to
help minimize the amount of incorrect tagging, invalid tagging and
context errors. We also expect that this will help to preserve the
integrity of the repository.

Remember: catch XML errors early. Production time is not the
time to do debugging.

4.7 Printing Available Only From Staging
For each branch, TeamSite provides a central repository (called
“staging”) and a work area (sandbox) for each user. Work areas
contain local copies of the documents contained in the staging area.
Authors commit changed files to staging for sharing between work
areas.

TeamSite manages merging and version control through the copy-
modify-merge model of document collaboration. Authors can get a
copy, edit freely, and commit their changes back to the repository.

When initially integrating TeamSite with E3, we found that we
could not connect it to an individual author’s work area easily. As
a result we made a policy decision: in order to create a PDF of a
document, that document (and all its required entities) must be
committed to Staging. This means that authors cannot publish
documents that exist only in their work area.

This decision seems like the wrong choice: authors want to create
PDF documents without publishing their files. However, if a
document is ready for printing, then it has, by definition, reached a
level of maturity. And, if a document has reached a publishable
maturity, it must be checked into the repository and submitted to
staging.

4.8 Our DTD with CALS Tables and Docbook
Indexes
We decided to create our own DTD that reflects the book
structure of our original document template. However, the
implementation includes two standard element structures that take
advantage of well-tested code written by more-qualified
authorities.

We chose the CALS table model as our table model. There is a
great deal of support for this model within the XML community.
Epic came with embedded table handling for the CALS model
which made the FOSI code easier to implement. It also came with
sample XSLT code for converting CALS tables to HTML tables.

We also chose to use the Docbook Index element model. This
allowed us to use well-tested, index-generation code in the FOSI.
Generating the index for print was the only time we used
Arbortext Consulting during our implementation. Because we
used the standard Docbook index definition, Arbortext was able to
deliver the index-generation code to us in a single day.

5. THE PROBLEMS
We continue to encounter problems based on the decisions we
made. However, we also continue to learn from them. This
section lists several issues we faced and the lessons we learned as
a result.

5.1 Epic Caches Information
One of our biggest issues is that Epic Editor caches information
which is only refreshed at load time. This is both an advantage
and a disadvantage.

Caching the DTD definition lets Epic do real-time verification
during authoring. This is a real advantage. Authors can edit freely,
without being required to know the DTD inside and out.

It is also a disadvantage: entities are not always updated when you
change it outside of the editor. This is a problem for work areas:
users can update a file in their work areas, but not see the change
in the document that is open in their editor.

We have found other various inconsistent behaviors here and
there. Unfortunately, we have not been able to isolate the causes
well enough to submit bug reports back to Arbortext.

5.2 Tool Choice Timing
We spent entirely too long choosing our content management
system. In part, this effort was a calamity of errors. We were
trying to accomplish too much and to accommodate the needs of
too many different departments; instead, we should have focused
on the best tool for our needs.

I should mention that we had the authoring tool (Epic) chosen at
least a year before the content management system was decided.

liz
Logo

http://www.single-sourcing.com/?utm_source=pdf&utm_medium=link&utm_term=sigdoc&utm_content=logo&utm_campaign=us

Originally, a committee drove the selection of the content
management system. Web publishing, software tools, technical
publications, and several other groups were all trying to find a
solution that would fit everyone’s needs. Part of this was budget
restrictions: the systems are expensive enough that a company can
really only afford only one. As a result, that one must suit a
variety of needs.

We also spent too much time going back and forth on the decision
between a file management system and a database system. I
continue to think about the choice we did not make and know that
we do not have the resources to pursue that option.

5.3 Scheduling
Failing to create a reasonable and well-planned schedule was one
of the greatest issues we faced. We did not have any one who had
project management experience on the team, and no one had
enough real experience to create realistic schedules.

5.3.1 Unrealistic Goals
Our goals were defined by MBOs (Management Business
Objectives). We often worked toward those goals rather than
spending the time required to make the project work correctly.
We regularly ended up spending the last three weeks of the quarter
kludging bits together so we could claim that our MBO had been
achieved. We would then spend the first three weeks of the next
quarter fixing the bugs that we had cobbled together the quarter
before. Each subsequent quarter of badly stated goals only served
to compound the mistake; the amount of work not done right the
first time carried over from the previous quarter but was not
accounted for in the current quarter’s MBOs.

5.3.2 Inexperienced Staff
Early on, we hired a contractor to get us started. While I continue
to believe this was the right choice, we did not go about it the right
way.

Hiring an expert early on allowed our completely inexperienced
team the time to learn the technology (XML and Epic). It also
provided us with a much-needed running start and some concrete
examples of how to make it actually work (we did this again later
on when IT began implementing Interwoven).

Unfortunately, we did not have large enough budget to employ the
XML expert full-time. Instead, she worked only 40 hours per
month, or one-quarter time. To her credit, she put in more hours
than she billed us for; on the other hand, she was not the expert
we thought she was. Also, neither of us knew how to estimate
effort for a single sourcing project. Her estimates were regularly
off. She would estimate effort that made sense for one-quarter
time, but she would be estimating for full-time.

That said, she completed the initial development in six months.
We would have done much better to have hired her full-time (but

that would not have spread out the budgetary dollars). We could
have developed the application much more quickly from the start.

5.3.3 Limited Staffing
For the most part , we have had one engineer working on the
project development. For six months we had the XML expert,
who had a technical publications background, not a programming
one; for another six months we had an engineering intern who did
remarkable work for us in the short time she was with us.

Unfortunately, when we had the engineering intern, we had a
limited problem space and limited sample data. Much of the work
she completed had to be dramatically revised to accommodate the
more complete DTDs (the superset of elements). This failure is
as much my own fault as anyone else’s. All our resources were so
buried with unrealistic development goals; no one really had time
to do testing and proper development.

I would not attempt a project of this scale with only one engineer
again. We had IT support for the two major applications
(TeamSite and E3) but that support ended where the application
did. Any single-sourcing project is bigger than the applications it
uses. It requires a significant amount of tools development that is
entirely independent of the applications. The tools development
must take up where the application (and the company that
develops it believes that it) leaves off.

5.4 Selling Upwards
Our project continues to face the threat of being cancelled by
upper management. This project was originally sold to a
management team in the early start-up days. At that time, the
company had a pile of money and knew that it would last forever.

Since then, times and the executive team members have changed.
When the management team changed, the project should have been
re-sold to them.

To be successful, this kind of project really requires 100% buy-in
from management. If not, the development team is continually
asked to justify its existence and required to prove its worth. The
problem discussed in section 5.3.1 is a direct result of the failure
to re-sell this project to management.

5.5 Author Issues
We are facing the same author issues that the single-sourcing
authorities are described in every one of their books. However,
some of the choices we made have resulted in at least one issue I
have not seen discussed previously.

5.5.1 No Offline Authoring
As of the time of this writing, authors cannot work offline.
Authors must be connected to the network to author documents in
our single sourcing system.

Three things contributed to this decision:

liz
Logo

http://www.single-sourcing.com/?utm_source=pdf&utm_medium=link&utm_term=sigdoc&utm_content=logo&utm_campaign=us

[1] To work offline, authors would be required to be diligent in
keeping their DTDs, stylesheets, and libraries up to date.

[2] Epic has at least one environment variable that is set in the
user’s operating system. Authors would need to change this
variable each time they start working. It would need to point
to one place when they are online and a different point when
they are offline.

[3] Interwoven provides individual work areas on the server. It
has not been smart at noticing that a freshly copied document
matches an old version rather than appearing to be a
completely new version. To make offline authoring work,
Interwoven would need to look at the timestamp second
rather than first.

5.5.2 Book Ownership
Even our most senior writer has issues of book ownership. As the
tools team fixed bugs, we changed the content markup in the
hardware books to match our changes. Learning to merge changes
and to let other people make changes in “his” books continues to
be the most difficult challenge we face. It affects not only the
author’s productivity but the author’s ability to get comfortable
with the content repository and to use it for documentation.

6. CONCLUSIONS
You make decisions; you live with them. Hopefully, you also
learn to make better decisions and learn how to improve the
situation created by the worst of the ones you made.

When I started this project, I went looking for the information in
the middle: the information that joined the single-source theory to
the XML implementation. In the end, I learned how to create that
information from source code developed by the XML expert that
got us started and from the ramifications created by the choices we
made.

Much of what I learned will be useful to me if I ever do this again
somewhere else. I definitely enjoyed doing it. I love seeing old
technologies applied to new domains: Technical documentation
discovers object-oriented concepts in a real, practical way. It’s
great. This is what I got into programming for in the first place.

7. ACKNOWLEDGMENTS
My thanks to Renu Bhargava, Mike Bushong, Brenda DePaolis,
Aviva Garrett, Tony Mauro, Rene Partyka, Frank Reade, and
Deepali Roy. This project worked out as well as it has largely
because of their efforts.

8. RESOURCES
I wanted to include a list of resources. In addition to the references
list, these are the books that I found most useful while
implementing single sourcing. The topics are varied but each
contributed in some measurable way to the project’s success.

[1] Carlis, J. and J. Maguire. Mastering Data Modeling: A User-
Driven Approach. Addison-Wesley, Boston MA, 2001.

[2] Fogel. K, and M. Bar. Open Source Development with CVS.
Coriolis, Scottsdale AZ, 2001.

[3] Holman, G.K. Definitive XSLT and XPATH. Prentice Hall
PTR, Upper Saddle River NJ, 2002.

[4] Holman, G.K. Definitive XSL-FO. Prentice Hall PTR, Upper
Saddle River NJ, 2003.

[5] Garshol, L.M. Definitive XML Application Development.
Prentice Hall PTR, Upper Saddle River NJ, 2002.

[6] Maler, E., and J. El Andaloussi. Developing SGML DTDs:
From Text to Model to Markup. Prentice Hall PTR, Upper
Saddle River NJ, 1996.

[7] McConnell, S. Rapid Development. Microsoft Press,
Redmond WA, 1996.

[8] McConnell, S. Software Project Survival Guide. Microsoft
Press, Redmond WA, 1998.

9. REFERENCES
[1] Ament, K. Single Sourcing: Building Modular

Documentation. William Andrew Publishing, Norwich NY,
2003.

[2] Wingard L, and C. Seiwald. “High-level Best Practices in
Software Configuration Management.”
http://www.perforce.com/perforce/bestpractices.html.
Viewed: 2003.

liz
Logo

http://www.single-sourcing.com/?utm_source=pdf&utm_medium=link&utm_term=sigdoc&utm_content=logo&utm_campaign=us

